Periodicity: Bi Annual.
Impact Factor:
SJIF:4.78 & GIF:0.428
Submission:Any Time
Publisher: IIR Groups
Language: English
Review Process:
Double Blinded

News and Updates

Author can submit their paper through online submission. Click here

Paper Submission -> Blind Peer Review Process -> Acceptance -> Publication.

On an average time is 3 to 5 days from submission to first decision of manuscripts.

Double blind review and Plagiarism report ensure the originality

IJWT provides online manuscript tracking system.

Every issue of Journal of IJWT is available online from volume 1 issue 1 to the latest published issue with month and year.

Paper Submission:
Any Time
Review process:
One to Two week
Journal Publication:
June / December

IJWT special issue invites the papers from the NATIONAL CONFERENCE, INTERNATIONAL CONFERENCE, SEMINAR conducted by colleges, university, etc. The Group of paper will accept with some concession and will publish in IJWT website. For complete procedure, contact us at

Paper Template
Copyright Form
Subscription Form
web counter
web counter
Published in:   Vol. 3 Issue 2 Date of Publication:   December 2014

A Survey on Implementation of Discrete Wavelet Transform for Image Denoising

Manpreet Kaur,Gagndeep Kaur AP

Page(s):   46-49 ISSN:   2278-2397
DOI:   10.20894/IJWT. Publisher:   Integrated Intelligent Research (IIR)

Image Denoising has been a well studied problem in the field of image processing. Images are often received in defective conditions due to poor scanning and transmitting devices. Consequently, it creates problems for the subsequent process to read and understand such images. Removing noise from the original signal is still a challenging problem for researchers because noise removal introduces artifacts and causes blurring of the images. There have been several published algorithms and each approach has its assumptions, advantages, and limitations. This paper deals with using discrete wavelet transform derived features used for digital image texture analysis to denoise an image even in the presence of very high ratio of noise. Image Denoising is devised as a regression problem between the noise and signals, therefore, Wavelets appear to be a suitable tool for this task, because they allow analysis of images at various levels of resolution.